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Preview
This chapter introduces two pricing approaches of contingent claims based on an underlying
asset. We first consider an analytic approach using the delta-hedging method. By construct-
ing a replicating portfolio, we see that the price of the contingent claim satisfies a PDE,
known as the Black-Scholes equation. In the second approach, we consider a probabilistic
approach using the risk-neutral pricing method. Using Girsanov’s theorem, we can compute
the price of the contingent claim by its expected discounted value under the risk-neutral
measure.

Key topics in this chapter:
1. Delta-hedging and Black-Scholes equation;

2. Risk-neutral measure and Girsanov’s theorem;

3. Risk-neutral pricing.

1 Delta-Hedging and Black-Scholes Equations
Delta-hedging and portfolio replication is a pricing approach of contingent claims by solv-
ing an associated partial differential equation (PDE), which is known as the Black-Scholes
equation. In this section, we fix a time T > 0 and let {St}t∈[0,T ] be a stock price process,
which follows a geometric Brownian motion:

dSt = µ dt+ σ dBt,

where µ ∈ R and σ > 0 represent the rate of return and the volatility of the risky asset,
respectively.

A contingent claim is a derivative whose future payoff depends on the underlying risky
asset {St}t∈[0,T ]. Let VT be an FT -measurable random variable that represents the payoff of a
derivative security at time T , based on the stock price process {St}t∈[0,T ]. The payoff VT may
be path-dependent, meaning it can depend on the entire trajectory of {St}Tt=0, rather than
solely on the terminal value ST . Examples of derivatives and their payoffs include:
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1. European options:

(a) Call: (ST −K)+

(b) Put: (K − ST )
+

2. Asian options:

(a) Call:
(

1
T

∫ T

0
St dt−K

)+

(b) Put:
(
K − 1

T

∫ T

0
St dt

)+

We exclude American options, since they allow investors to choose an optimal exercise time,
leading to an optimal stopping problem that is beyond the scope of this course. Although
Asian options cannot be priced using the Black-Scholes equation, it can be priced using
risk-neutral method later in this chapter.

The core idea of delta-hedging/replicating portfolio is to construct a portfolio strategy
{∆t}t∈[0,T ] such that the portfolio value matches the claim’s value throughout the interval
t ∈ [0, T ], which yields a partial differential equation (PDE) that governs the evolution of
the claim’s price. In this section, we assume that VT = f(ST ), i.e., the payoff depends on the
final price of the risky asset. We assume that there exists a function V : [0, T ]×R → R, such
that V (t, s) represents that price of the contingent claim at time t given that St = s.

1.1 Black-Scholes Equation

We construct a self-financing replicating portfolio {Xt}t∈[0,T ] by:

(i) Choosing an initial capital X0 at t = 0;

(ii) At each time t ∈ [0, T ], holding ∆t units of the stock, with the remaining amount
Xt −∆tSt invested at or borrowed from the risk-free rate r.

We now derive the dynamics of the replicating portfolio {Xt}t∈[0,T ]. A portfolio is called self-
financing if its value changes only due to gains and losses from the assets held, without
any additional infusion or withdrawal of capital. Mathematically, we can write the portfolio
value as

Xt = ∆tSt + βt,

where βt = Xt −∆tSt is the bank account position. Differentiating gives

dXt = ∆t dSt + St d∆t + dβt.

The self-financing condition requires that any change in ∆t is exactly offset by the bank
account, i.e.

dβt = rβt dt− St d∆t = r(Xt −∆tSt) dt− St d∆t.
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Substituting, the St d∆t terms cancel, leaving

dXt = ∆t dSt︸ ︷︷ ︸
proceeds from holding the stock

+ r(Xt −∆tSt) dt︸ ︷︷ ︸
proceeds from lending/borrowing at r

= ∆t (Stµ dt+ Stσ dBt) + r(Xt −∆tSt) dt

= (rXt +∆t(µ− r)St) dt+∆tσSt dBt. (1)

By Itô’s lemma, the discounted portfolio value {e−rtXt}t∈[0,T ] satisfies the following SDE:

d(e−rtXt) = −re−rtXt dt+ e−rt dXt

= e−rt∆tSt ((µ− r) dt+ σ dBt) . (2)

Next, we consider the evolution of the price of the contingent claim. At time t, this price
is given by V (t, St). Applying Itô’s lemma to the process {V (t, St)}t∈[0,T ], we have

dV (t, St) = Vt(t, St) dt+ VS(t, St) dSt +
1

2
VSS(t, St) d⟨S⟩t

=

[
Vt(t, St) + VS(t, St)Stµ+

1

2
σ2S2

t VSS(t, St)

]
dt+ VS(t, St)σSt dBt.

Therefore, the discounted price of the contingent claim, {e−rtV (t, St)}t∈[0,T ], is given by

d(e−rtV (t, St)) = −re−rtV (t, St) dt+ e−rtdV (t, St)

= e−rt

[
−rV (t, St) + Vt(t, St) + VS(t, St)Stµ+

1

2
σ2S2

t VSS(t, St)

]
dt

+ e−rtVS(t, St)σSt dBt. (3)

The portfolio {Xt}t∈[0,T ] under the strategy {∆t}t∈[0,T ] is said to be a replicating port-
folio of the contingent claim if, for any t ∈ [0, T ], Xt = V (t, St). To construct a replicating
portfolio, we will need V (0, s) = X0, and for any t ∈ [0, T ], dXt = dV (t, St), or equiva-
lently,

d(e−rtXt) = d(e−rtV (t, St)). (4)

Using (4) and equating the diffusion term of (2) and (3), we have

∆tσSt = VS(t, St)σSt ⇒ ∆t = VS(t, St) . (5)

Further using (5), and equating the drift term of (2) and (3), we obtain

∆tSt(µ− r) = −rV (t, St) + Vt(t, St) + µStVS(t, St) +
1

2
σ2S2

t VSS(t, St)

VS(t, St)(µ− r) = −rV (t, St) + Vt(t, St) + µStVS(t, St) +
1

2
σ2S2

t VSS(t, St)
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0 = Vt(t, St) + rStVS(t, St) +
1

2
σ2S2

t VSS(t, St)− rV (t, St).

This leads to the Black-Scholes equation :

Theorem 1.1 Under the Black-Scholes model, the price V (t, s) of the contingent claim
VT = f(ST ) at time t ∈ [0, T ] when St = s is the solution of the Black-Scholes partial
differential equation :Vt(t, s) + rsVS(t, s) +

1

2
σ2s2VSS(t, s)− rV (t, s) = 0,

V (T, s) = f(s).
(6)

The replicating strategy is given by ∆t = VS(t, St).

The Black-Scholes equation is a parabolic PDE. To completely solve the equation, one
usually needs two boundary conditions at s = 0 and s = ∞ in addition to the terminal
condition V (T, s) = f(s).

1. Boundary condition at s = 0: substituting s = 0 into (1.2), we obtain Vt(t, 0) =
rV (t, 0). Solving this ODE yields

V (t, 0) = ertV (0, 0).

In particular, f(0) = V (T, 0) = erTV (0, 0), so that V (0, 0) = e−rTf(0). Therefore,

V (t, 0) = e−r(T−t)f(0), t ∈ [0, T ].

For call options, f(0) = (0−K)+ = 0, so that V (t, 0) = 0.

2. Boundary condition as s → +∞: the boundary condition as s → +∞ is customized
based on the payoff of the contingent claim. For call options f(s) = (s − K)+, we
generally set

lim
s→+∞

(
V (t, s)−

(
s− e−r(T−t)K

))
= 0, t ∈ [0, T ].

This reflects that when the option is deep in the money, its value behaves like the dif-
ference between the forward price of the stock and the discounted strike, i.e., V (t, s) ≈
s− e−r(T−t)K.

1.2 Price of European Options

We now derive the expression V (t, s) for an European call option, i.e., V (T, s) = (s−K)+,
where K > 0 is the strike price. Under this setting, the Black-Scholes equation readsVt(t, s) + rsVS(t, s) +

1

2
σ2s2VSS(t, s)− rV (t, s) = 0,

V (T, s) = (s−K)+.
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To solve the PDE, we consider the following transformation:

τ := T − t, x = ln
( s

K

)
, w(τ, x) := V (t, s) = V (T − τ,Kex) .

Using the change of variables, we compute the derivatives of V in terms of w. Since
V (t, s) = w(τ, x) with τ = T − t and x = ln(s/K), we have dτ

dt
= −1, dx

ds
= 1

s
, and thus

Vt(t, s) = −wτ (τ, x), Vs(t, s) =
1

s
wx(τ, x),

Vss(t, s) = − 1

s2
wx(τ, x) +

1

s2
wxx(τ, x) =

1

s2
(wxx(τ, x)− wx(τ, x)) .

Substitute these into the Black–Scholes PDE, we have

0 = Vt + rsVs +
1

2
σ2s2Vss − rV

= −wτ + rs

(
1

s
wx

)
+

1

2
σ2s2

[
1

s2
(wxx(τ, x)− wx(τ, x))

]
− rw

= −wτ +

(
r − 1

2
σ2

)
wx +

1

2
σ2wxx − rw

⇒ wτ =

(
r − 1

2
σ2

)
wx +

1

2
σ2wxx − rw,

with the initial condition w(0, x) = (Kex −K)+ = K(ex − 1)+.

We further consider a change of variable to transform the PDE for w to a standard heat
equation. To this end, we consider the ansatz

w(τ, x) = eAx+Bτ u(τ, x),

with constants A,B to be chosen. Compute the derivatives

wτ = eAx+Bτ
(
uτ +Bu

)
,

wx = eAx+Bτ
(
ux + Au

)
,

wxx = eAx+Bτ
(
uxx + 2Aux + A2u

)
.

Substituting these into the PDE of w and canceling the common factor eAx+Bτ gives

uτ +Bu =
1

2
σ2
(
uxx + 2Aux + A2u

)
+
(
r − 1

2
σ2
)(

ux + Au
)
− ru

⇒ uτ =
1

2
σ2uxx +

(
σ2A+ r − 1

2
σ2
)
ux +

(
1

2
σ2A2 +

(
r − 1

2
σ2

)
A− r −B

)
u.
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By choosing

A =
1

2
− r

σ2
, B =

1

2
σ2A2 +

(
r − 1

2
σ2

)
A− r,

we arrive at the following heat equation.uτ =
1

2
σ2uxx,

u(0, x) = e−Axw(0, x) = Ke−Ax(ex − 1)+.

The general solution of the heat equation is given by convolution with the Gaussian
kernel:

u(τ, x) =
1√

2πσ2τ

∫ ∞

−∞
exp

(
−(x− y)2

2σ2τ

)
u(0, y) dy

=
K√
2πσ2τ

∫ ∞

−∞
exp

(
−(x− y)2

2σ2τ

)
e−Ay(ey − 1)+ dy.

Upon solving the equation, we obtain the formula:

V (t, s) = sN(d1(T − t, s))−Ke−r(T−t)N(d2(T − t, s)),

where

d1(τ, x) =
ln
(

x
K

)
+
(
r + 1

2
σ2
)
τ

σ
√
τ

, d2(τ, x) = d1 − σ
√
τ ,

and N(·) denotes the cumulative distribution function of the standard normal variable.

Using the pricing formula for European call options, we can compute the price of the
European put option using the put-call parity .

Theorem 1.2 Let C and P denote the price of an European call option and European
put option with expiration time T , strike price K, on an underlying asset with price S
respectively. Then,

C +Ke−rT = S + P.

Proof. Construct a portfolio by purchasing a unit of call option and lending Ke−rT at the
riskfree rate r. The price of the portfolio is C+Ke−rT . At time T , the payoff of the portfolio
is (ST −K)+ +Ke−rT · erT = max{ST , K}.

Now, construct another portfolio with with a long position of a unit of put option and a
long position of a unit of the underlying asset. The price of the portfolio is S + P . At time
T , the payoff of the portfolio is (K − ST )+ + ST = max{ST , K}.

Since the two portfolios share the same payoff, by the law of one price, the costs of the
portfolios must be the same, i.e., C +Ke−rT = S + P .
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Using the put-call parity and the fact the N(−x) = 1−N(x), the put option price V P (t, s)
at time t with St = s is given by

V p(t, s) = V (t, s) +Ke−r(T−t) − s

= s (N(d1(T − t, s))− 1)−Ke−r(T−t) (N(d2(T − t, s))− 1)

= Ke−r(T−t)N(−d2(T − t, s))− sN(−d1(T − t, s)).

2 Risk Neutral Measure: Motivations from Binomial Tree
Model

The risk-neutral pricing method is an alternative approach to delta-hedging. The core idea
is to compute the price of the contingent claim using its expected discount value under
an appropriate probability measure. In this section, we recall the risk-neutral pricing of a
contingent claim based on the price of a risky asset under a binomial tree model.

Let S0 > 0 be the current stock price. Over one period ∆t, the stock moves to Su = uS0 or
Sd = dS0 with u > 1 > d > 0. Let B0 = 1 be the money market account and B1 = er∆t with
r ≥ 0 being the continuously compounded risk-free interest rate. A (one-period) contingent
claim H pays Hu := H(Su) in the up state and Hd := H(Sd) in the down state at time 1
(i.e., at t = ∆t).

Suppose under the real-world (physical) measure P, the up move occurs with probability
p ∈ (0, 1). A tempting price formula is

V0
?
= e−r∆t EP[H] = e−r∆t

(
pHu + (1− p)Hd

)
.

However, this method incorrectly uses r as the discount factor under the real-world measure.
Indeed, under P, a stochastic discount factor that incorporates the risk premium would be
required. Hence, arbitrage-free prices cannot be obtained this way. Instead, we use the
method of replicating portfolio to price the contingent claim as follows.

Let ∆ denote the number of units of the risky asset and B the amount invested in the
bank account. The initial portfolio value is Π0 = ∆S0 +B. We seek ∆ and B such that the
portfolio replicates the contingent claim, i.e., its value at time 1 coincides with the payoff in
both states. This requires solving

Π
(u)
1 = ∆Su +Ber∆t = Hu, Π

(d)
1 = ∆Sd +Ber∆t = Hd

replicates the claim in both states. Solving the linear system,

∆ =
Hu −Hd

Su − Sd
=

Hu −Hd

(u− d)S0

,

B =
e−r∆t(uHd − dHu)

u− d
.
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Hence the arbitrage-free price is

V0 = Π0 = ∆S0 +B = e−r∆t(qHu + (1− q)Hd) ,

where the risk-neutral probability q is defined by

q :=
er∆t − d

u− d
∈ (0, 1),

provided that d < er∆t < u. Equivalently,

V0 = EP̃[e−r∆tH
]
,

where P̃ is the (unique) risk-neutral measure with P̃(up) = q and P̃(down) = 1−q. Therefore,
it is only under the risk-neutral measure P̃ that the price of the contingent claim can be
expressed as the expected discounted payoff, with r serving as the discount rate.

By construction of q,

EP̃[St1 ] = EP̃[St1 | F0] = qSu + (1− q)Sd =
(
er∆t − d

)Su − Sd

u− d
+ Sd = er∆tS0.

In general, for a multi-period model, the same argument yields, for n = 0, 1, . . . ,

EP̃[Stn+1 | Ftn

]
= er∆tStn , so that EP̃[e−r(n+1)∆tStn+1 | Ftn

]
= e−rn∆tStn ,

where tn = n∆t. This implies that the discounted stock price {e−rn∆tStn} is a martingale
under P̃.

3 Risk-Neutral Measures
The binomial tree model in Section 2 suggests that in order to compute the price of a
contingent claim as the expected discounted payoff at the risk-free rate, one must introduce an
alternative measure P̃. Under this measure, the discounted stock price becomes a martingale.
In this section, we fix a time T > 0 and construct a risk-neutral measure P̃ when the stock
price process {St}t∈[0,T ] follows a generalized geometric Brownian motion:

dSt = µtSt dt+ σtSt dBt,

where {µt}t∈[0,T ] and {σt}t∈[0,T ] are adapted processes, and σt > 0 for all t ∈ [0, T ]. We also
let {Dt}t∈[0,T ] be a stochastic discount factor given by

Dt = e−
∫ t
0 rs ds,

where {rt}t∈[0,T ] is an adapted process representing the stochastic interest rate.
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Consider the discounted stock price process, {DtSt}t∈[0,T ], which by Itô’s lemma (product
rule; see Theorem 3.2 in Chapter 5), admits the following dynamics:

d(DtSt) = St dDt +Dt dSt + d⟨D,S⟩t
= −rtStDt dt+Dt (µtSt dt+ σtSt dBt)

= DtSt ((µt − rt)dt+ σt dBt) ,

(7)

Note that the cross-variation term vanishes since Dt has a zero quadratic variation. From
(7), the discounted process DtSt is not a martingale since its SDE is not driftless unless in
the special case µ ≡ r.

If we define a process {B̃t}t∈[0,T ] by

B̃t := Bt +

∫ t

0

θs ds, where θt :=
µt − rt
σt

.

Then, we can rewrite the dynamics of DtSt as

d(DtSt) = DtStσt (θt dt+ dBt) = DtStσt dB̃t. (8)

The process {θt}t∈[0,T ] is called the market price of risk. Since B̃t is not a Brownian motion
under the real-world measure P, this change of variable alone will not make the discounted
process DtSt a martingale under P. However, if we introduce an alternative measure P̃ under
which {B̃t}t∈[0,T ] is a genuine Brownian motion, then DtSt becomes a true martingale. This
measure P̃ is called the risk-neutral measure . To this end, we shall introduce Girsanov’s
theorem.

3.1 Change of Measures

In Chapter 1, we briefly introduced the idea of absolute continuity of the distribution PX of a
random variable X with respect to the Lebesgue measure. In that case, PX can be described
using a probability density function. This concept naturally extends to the relationship
between two general probability measures.

Definition 3.1 Let P and P̃ be two probability measures on the measurable space (Ω,F).
We say that P̃ is absolutely continuous with respect to P, denoted by P̃ ≪ P, if for
any A ∈ F with P(A) = 0, it holds that P̃(A) = 0. If P̃ ≪ P and P ≪ P̃, we say that P
and P̃ are equivalent. In that case, we write P ∼ P̃.

From the previous example, we observed that the discounted stock price process {DtSt} is
not a martingale under the real-world measure. This motivates the search for an alternative
measure under which it becomes a martingale, which is precisely the role of the risk-neutral
measure. Changing the underlying probability measure alters the distribution of random
variables, and to relate expectations under the two measures, we use the Radon–Nikodym
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derivative. This provides the key tool to express quantities such as EP̃[X] in terms of the
original measure P.

Theorem 3.1 Let (Ω,F ,P) be a probability space, and let Z ∈ L1(Ω,F ,P) be a non-
negative random variable such that E[Z] = 1. Define P̃ : F → R by

P̃(A) := E[Z1A], for all A ∈ F ,

where the expectation is taken with respect to P.
Then:

1. P̃ is a probability measure absolutely continuous with respect to P, i.e., P̃ ≪ P.
2. For any integrable random variable X such that XZ ∈ L1(Ω,F ,P), we have

Ẽ[X] = E[XZ].

3. The function Z is called the Radon–Nikodym derivative of P̃ with respect to
P, denoted

Z =
dP̃
dP

.

4. If in addition Z > 0 P-a.s., then P ∼ P̃, and for any Y ∈ L1(Ω,F ,P), we have

E[Y ] = Ẽ
[
Y

Z

]
.

Proof.

1. We verify that P̃ is a probability measure:

(i) P̃(A) ∈ [0, 1] for any A ∈ F : P̃(A) = E[Z1A] ≤ E[Z] = 1, and P̃(A) ≥ 0 since
Z ≥ 0 a.s.

(ii) P̃(Ω) = 1: P̃(Ω) = E[Z1Ω] = E[Z] = 1.

(iii) Countable additivity: let {An}∞n=1 ⊆ F and Ai ∩ Aj = ∅ for i ̸= j. Then,

P̃ (∪∞
n=1An) = E

[
Z1∪∞

n=1An

]
= E

[
Z

∞∑
n=1

1An

]
=

∞∑
n=1

E[Z1An ] =
∞∑
n=1

P̃(An),

where we have used the MCT in the second-to-last equality.

To verify that P̃ ≪ P, note that for any A ∈ F with P(A) = 0, we have Z1A = 0

P-a.s., which implies P̃(A) = E[Z1A] = 0.
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2. Suppose that X = 1A, where A ∈ F . Then,

Ẽ[X] =

∫
Ω

1A(x)dP̃(x) = P̃(A) = E[Z1A] = E[XZ].

This verifies the formula for indicator random variables. By linearity, the formula also
holds for any simple random variable. For general random variables, we can use the
standard 2-step approach: prove the formula for any non-negative random variables
using dyadic approximation and MCT, followed by any general random variables by
considering the decomposition X = X+ −X−. We omit the details herein.

4. If Z > 0 P-a.s, we have that 0 ≤ 1/Z < ∞ P-a.s., which is thus a well-defined random
variable. In addition, 1/Z ∈ L1(Ω,F , P̃), since

Ẽ
[
1

Z

]
= E

[
Z · 1

Z

]
= 1.

Note that P(A) = E[1A] = Ẽ[1A/Z]. Hence, using Statements 1 and 2 of the theorem,
we have P ≪ P̃, E[Y ] = Ẽ[Y/Z] for any Y ∈ L1(Ω,F ,P), where the Radon–Nikodym
derivative of P with respect to P̃ is given by

dP
dP̃

=
1

Z
.

Example 3.1 Let (Ω,F ,P) = ([0, 1],B([0, 1]), λ). Consider the random variable Z on
(Ω,F ,P) defined by Z(ω) = 2ω, ω ∈ [0, 1].

(a) Show that P̃ : F → R defined by P̃(A) := E[Z1A] is a probability measure.
(b) For any a, b ∈ [0, 1] with b > a, calculate P̃([a, b]).

Solution.
(a) Since Z ≥ 0 P-a.s., it suffices to show that E[Z] = 1. Indeed,

E[Z] =
∫ 1

0

2ω dω = ω2
∣∣1
0
= 1. (9)

Therefore, P̃ defines a probability measure.
(b) For any 0 ≤ a < b ≤ 1,

P̃([a, b]) = E[Z1[a,b]] =

∫ b

a

2ω dω = b2 − a2.
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The following example illustrates how a drifted normal random variable becomes a stan-
dard normal variable under a change of measure, where the Radon–Nikodym derivative is
given by an exponential function. This is closely related to Girsanov’s theorem and the
construction of a risk-neutral measure, which will be explored later in this course.

Example 3.2 Suppose that X ∼ N (0, 1) is a standard normal variable on the prob-
ability space (Ω,F ,F), i.e., X admits the following probability density function. Let
Y := X + µ, where µ ∈ R, and a non-negative random variable Z by

Z = exp

(
−µX − µ2

2

)
.

(a) Determine the distribution of Y on (Ω,F ,P).
(b) Show that P̃ : F → R defined by P̃(A) = E[Z1A], A ∈ F , is a probability measure.
(c) Determine the distribution of Y on (Ω,F , P̃).

Solution.
(a) Since X ∼ N (0, 1), Y ∼ N (µ, 1).
(b) Since Z ≥ 0 P-a.s., by Theorem 3.1, it suffices to verify that E[Z] = 1. Indeed,

E[Z] = e−
µ2

2 E[e−µX ] = e−
µ2

2 e
µ2

2 = 1,

where we have used the formula of the MGF for a standard normal variable.
(c) We compute the MGF of Y under P̃. For any t ∈ R, using Theorem 3.1,

Ẽ[etY ] = E[etYZ] = E
[
et(X+µ)e−µX−µ2

2

]
= etµ−

µ2

2 E[e(t−µ)X ] = etµ−
µ2

2 e
(t−µ)2

2 = e
t2

2 ,

which is the MGF of a standard normal variable. Therefore, Y ∼ N (0, 1) in
(Ω,F , P̃).

We now turn our attention to the finite time horizon [0, T ]. Let (Ω,F , {F}t∈[0,T ],P) be
a filtered probability space with FT = F , and Z be a positive and FT -measurable random
variable with E[Z] = 1. Then, P̃(A) := E[Z1A], A ∈ F defines a probability measure. By
Theorem 3.1, we know that for any FT = F -measurable random variable Y , Ẽ[Y ] = E[Y Z].
More generally, if Y is Ft-measurable for some 0 ≤ t ≤ T , the following formula holds:
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Lemma 3.2 Let Y be an Ft-measurable random variable for some 0 ≤ t ≤ T . Then,

Ẽ[Y ] = E[Y Zt],

where for 0 ≤ t ≤ T ,
Zt = E[Z|Ft].

Remark 3.3. By the tower property of conditional expectations, {Zt}t∈[0,T ] is a martingale;
see Example 3.3 of Chapter 4.

Proof. By Theorem 3.1, we have

Ẽ[Y ] = E[Y Z] = E[Y E[Z|Ft]] = E[Y Zt],

where the second equality follows from the fact that Y is Ft-measurable.

Using the above result, we can prove the following Bayes formula for conditional expec-
tations, which will eventually lead to Girsanov’s theorem:

Lemma 3.4 (Bayes theorem for conditional expectations) Let Y be an Ft-
measurable random variable for some t ∈ [0, T ]. For any 0 ≤ s ≤ t, we have

Ẽ[Y |Fs] =
1

Zs

E[Y Zt|Fs]. (10)

Proof. It is clear that the RHS of (10) is Fs-measurable. Hence, it suffices to check that, for
any A ∈ Fs,

Ẽ
[
1A

Zt

E[Y Zt|Fs]

]
= Ẽ[Y 1A].

To show this, using Lemma 3.2 and the fact that 1
Zs
E[Y Zt|Fs] is Fs-measurable,

Ẽ
[
1A

Zs

E[Y Zt|Fs]

]
= E

[(
1A

Zs

E[Y Zt|Fs]

)
Zs

]
= E [1AE[Y Zt|Fs]]

= E [1AY Zt]

= Ẽ[Y 1A],

where the second-to-last equality follows from the definition of conditional expectations given
Fs, and the last equality is a consequence of Lemma 3.2 as being applied to Y 1A.
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3.2 Girsanov’s Theorem for Brownian Motions

Theorem 3.5 (Girsanov) Let {Bt}t∈[0,T ] be a standard Brownian motion in the filtered
probability space (Ω,F , {Ft}t∈[0,T ],P), and {θt}t∈[0,T ] be an adapted process. Define the
processes

Zt := exp

(
−
∫ t

0

θs dBs −
1

2

∫ t

0

θ2s ds

)
B̃t := Bt +

∫ t

0

θs ds.

Suppose that

E
[∫ T

0

θ2tZ
2
t dt

]
< ∞.

Then, E[ZT ] = 1, and under the probability measure P̃, where

P̃(A) := E[ZT1A], A ∈ FT = F ,

the process {B̃t}t∈[0,T ] is a standard Brownian motion.

Proof. By Lévy’s characterization theorem (Theorem 3.4 in Chapter 5), it suffices to verify
that {B̃t}t∈[0,T ] is a martingale with continuous sample paths and quadratic variation ⟨B̃⟩t =
t.

We first derive the quadratic variation of B̃. Note that B̃ is an Itô process, and by
Proposition 2.3 of Chapter 51, we have ⟨B̃⟩t = ⟨B⟩t = t. The continuity of B̃ is clear, since
B has continuous sample paths and t 7→

∫ t

0
θs ds is also continuous. Therefore, it suffices to

show that B̃ is a martingale under P̃.

To proceed, we show that
EP̃[B̃t|Fs] = B̃s

for any 0 ≤ s ≤ t ≤ T . Using Lemma 3.4, we have

EP̃[B̃t|Fs] =
1

Zs

E[ZtB̃t|Fs].

Under measure P, by applying Itô’s lemma to the process ZtB̃t, we have

d(ZtB̃t) = Zt dB̃t + B̃t dZt + d⟨Z, B̃⟩t
= Zt(θt dt+ dBt) + B̃t(−θtZt dBt)− θtZt dt

= Zt(1− θtB̃t) dBt.

1The property ⟨B⟩t = t is pathwise and therefore remains valid under P̃, since P̃ ≪ P.
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This shows that ZtB̃t is a martingale under P, and thus E[ZtB̃t|Fs] = ZsB̃s. Consequently,

EP̃[B̃t|Fs] =
1

Zs

E[ZtB̃t|Fs] =
1

Zs

ZsB̃s = B̃s.

Therefore, B̃ is a true martingale under P̃ and the proof is complete.

We now return to the discussion of the discounted stock price process, {DtSt}t∈[0,T ], and
recall that its dynamics is given by (8):

d(DtSt) = DtStσt (θt dt+ dBt) = DtStσt dB̃t,

where B̃t = Bt +
∫ t

0
θs ds and θt = (µt − rt)/σt is the market price of risk. By Girsanov’s

theorem, we can define the measure P̃ as in Theorem 3.5 such that B̃ is a standard Brownian
motion under P̃. This measure P̃ is called the risk-neutral measure. Some implications of
the stock price process under the risk-neutral measure:

1. The discounted stock price process {DtSt}t∈[0,T ] is a martingale under P̃, since the Itô’s
diffusion (8) is driftless.

2. The undiscounted stock price process {St}t∈[0,T ] has a rate of return equal to the risk-
free interest rate rt under P̃:

dSt = Stµt dt+ Stσt dBt

= Stµt dt+ Stσt d

(
B̃t −

∫ t

0

θs ds

)
= St(µt − σtθt) dt+ Stσt dB̃t

= Strt dt+ Stσt dB̃t. (11)

In addition, we also have the following observations:

(i) The volatility process σt of St is preserved under P̃. Since σt governs the dispersion
and variability of the stock price paths, the set of possible realized paths of St

remains unchanged under the risk-neutral measure.

(ii) Since it is often the case that µt > rt, P̃ adjusts the probability weights by
assigning relatively more mass to lower returns, thereby lowering the expected
rate of return from µt to rt.
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4 Risk-Neutral Pricing

4.1 Risk-Neutral Pricing Formula

The objective is to construct a self-financing hedging portfolio {Xt}t∈[0,T ] using a portfolio
strategy {∆t}t∈[0,T ] such that

XT = VT P-a.s.

By the law of one price, the initial capital X0 would be the risk-neutral price of the
security at time t = 0. In the next section, we shall show that such a portfolio strategy
{∆t}t∈[0,T ] exists.

We now derive an expression for the initial capital X0 required. Following the derivation
of (1), we have

dXt = ∆t dSt︸ ︷︷ ︸
proceeds from holding the stock

+ rt(Xt −∆tSt) dt︸ ︷︷ ︸
proceeds from lending/borrowing at rt

= ∆t (Stµt dt+ Stσt dBt) + rt(Xt −∆tSt) dt

= ∆t

(
Strt dt+ Stσt dB̃t

)
+ rt(Xt −∆tSt) dt

= rtXt dt+∆tStσt dB̃t,

where {B̃t}t∈[0,T ] is the standard Brownian motion under the risk-neutral measure P̃.

Using this and the product rule, the discounted portfolio value process, {DtSt}t∈[0,T ],
where Dt = e−

∫ t
0 rs ds,

d(DtXt) = ∆tStσt dB̃t, (12)

making {DtSt}t∈[0,T ] a martingale under P̃. By the martingale property and the fact that
XT = VT , we have

X0 = D0X0 = Ẽ [DTXT |F0] = Ẽ[DTVT ] = Ẽ
[
e−

∫ T
0 rs dsVT

]
. (13)

The RHS (13) presents the risk-neutral price of the security at t = 0, which is the expected
discounted value of VT under the risk-neutral measure P̃.

For general t ∈ [0, T ], the value of the hedging portfolio Xt represents the risk-neutral
price of the security at time t. Let Vt = Xt. By the martingale property of {DtXt}t∈[0,T ] =

{DtVt}t∈[0,T ] under P̃,
DtVt = Ẽ[DTVT |Ft].

Rearranging the above yields the risk-neutral pricing formula

Vt = Ẽ
[
DT

Dt

VT |Ft

]
= Ẽ

[
e−

∫ T
t rs dsVT |Ft

]
.
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4.2 Black-Scholes Formula for European Options

We derive the risk-neutral price of an European call option, VT = (ST −K)+, where K >
0 denotes the strike price, under a constant risk-free rate r· ≡ r and the Black-Scholes
model:

dSt = St(µ dt+ σ dBt),

where µ ∈ R and σ > 0 are constants.

Theorem 4.1 Under the Black-Scholes model with constant risk-free rate r, the risk-
neutral price of an European call option is given by

Vt = c(t, St) = Ẽ[e−r(T−t)(ST −K)+|Ft],

where
c(t, x) = xN(d1(T − t, x))−Ke−r(T−t)N(d2(T − t, x)), (14)

N(·) denotes the cumulative distribution function of the standard normal variable, and

d1(τ, x) :=
ln
(

x
K

)
+
(
r + 1

2
σ2
)
τ

σ
√
τ

,

d2(τ, x) :=
ln
(

x
K

)
+
(
r − 1

2
σ2
)
τ

σ
√
τ

= d1(τ, x)− σ
√
τ .

Proof. Recall from (11) that, under the risk-neutral measure P̃, the stock price process follows
the following SDE:

dSt = St(r dt+ σ dB̃t).

Solving this SDE yields

ST = S0 exp

((
r − 1

2
σ2

)
T + σB̃T

)
,

which also implies

ST = St exp

((
r − 1

2
σ2

)
(T − t) + σ(B̃T − B̃t)

)
.

Given Ft, we know that Z := B̃T−B̃t√
T−t

∼ N(0, 1) under the risk-neutral measure P̃. In
addition,

ST > K ⇐⇒ Z =
B̃T − B̃t√

T − t
≥

ln
(

K
St

)
−
(
r − 1

2
σ2
)
(T − t)

σ
√
T − t

= −d2(T − t, St).
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Therefore,

c(t, St) = Ẽ[e−r(T−t)(ST −K)+|Ft]

= Ẽ
[
e−r(T−t)

{
St exp

((
r − 1

2
σ2

)
(T − t) + σ

√
T − t Z

)
−K

}
1{Z>−d2(T−t,St)}

∣∣Ft

]
=

∫ ∞

−d2(T−t,St)

e−r(T−t)

{
St exp

((
r − 1

2
σ2

)
(T − t) + σ

√
T − t z

)
−K

}
φ(z) dz

= Ste
−σ2(T−t)

2

∫ ∞

−d2(T−t,St)

eσ
√
T−tzφ(z) dz −Ke−r(T−t)

∫ ∞

−d2(T−t,St)

φ(z) dz, (15)

where φ(z) is the pdf of the standard normal variable.

The first term on the right-hand side of (15) can be computed by

Ste
−σ2(T−t)

2

∫ ∞

−d2(T−t,St)

eσ
√
T−t zφ(z) dz = St

∫ ∞

−d2(T−t,St)

e−
z2

2
+σ

√
T−t z−σ2(T−t)

2

√
2π

dz

= St

∫ ∞

−d2(T−t,St)

e−
(z−σ

√
T−t)2

2

√
2π

dz

= St

∫ ∞

−(d2(T−t,St)+σ
√
T−t)

e−
y2

2

√
2π

dy

= St

∫ ∞

−d1(T−t,St)

φ(y) dy

= St (1−N (−d1(T − t, St)))

= StN(d1(T − t, St)),

where we have used the fact that N(z) = 1−N(−z) for any z ∈ R. On the other hand, the
second term on the right-hand side of (15) is given by

Ke−r(T−t)

∫ ∞

−d2(T−t,St)

φ(z) dz = Ke−r(T−t) (1−N(−d2(T − t, St)))

= Ke−r(T−t)N(d2(T − t, St)).

Substituting these into (15), we obtain

c(t, St) = StN(d1(T − t, St))−Ke−r(T−t)N(d2(T − t, St))

as desired.

4.3 Martingale Representation Theorem

The risk-neutral pricing formula is based on the assumption that we can find a strategy
{∆t}t∈[0,T ] such that the portfolio value XT agrees with the payoff of the contingent claim VT .
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The existence of such a portfolio strategy is a consequence of the martingale representation
theorem:

Theorem 4.2 (Martingale Representation) Let {Bt}t∈[0,T ] be a Brownian motion
on the filtered probability space (Ω,F , {Ft}t∈[0,T ],P), where {Ft}t∈[0,T ] is the filtration
generated by {Bt}t∈[0,T ]. Then, for any martingale {Mt}t∈[0,T ] adapted to {Ft}t∈[0,T ],
there exists an adapted process Γt such that

Mt = M0 +

∫ t

0

Γs dBs.

Based on Theorem 4.2, we have the following martingale representation theorem upon a
change of measure:

Corollary 4.3 Let {Bt}t∈[0,T ] be a Brownian motion on the filtered probability space
(Ω,F , {Ft}t∈[0,T ],P), where {Ft}t∈[0,T ] is the filtration generated by {Bt}t∈[0,T ]. Let
{Zt}t∈[0,T ] and {B̃t}t∈[0,T ] be the derivative process and the Brownian motion under P̃ as
defined in Theorem 3.5, respectively. Then, for any {Ft}t∈[0,T ], P̃-martingale {M̃t}t∈[0,T ],
there exists an {Ft}t∈[0,T ]-adapted process {Γ̃t}t∈[0,T ] such that

M̃t = M̃0 +

∫ t

0

Γ̃s dB̃s.

Proof. We first claim that Mt := ZtM̃t is a P-martingale. For any 0 ≤ s ≤ t ≤ T , using
Lemma 3.4,

E[Mt|Fs] = E[ZtM̃t|Fs] = ZsEP̃[M̃t|Fs] = ZsM̃s,

which verifies the claim. By Theorem 4.2, there exists an adapted process Γ such that

Mt = M0 +

∫ t

0

Γs dBs.

To proceed, we apply Itô’s lemma on M̃t :=
Mt

Zt
. Recall

dZt = −Ztθt dBt,

so that

d

(
1

Zt

)
= −dZt

Z2
t

+
1

2

(
2

Z3
t

)
d⟨Z⟩t

=
θtZt

Z2
t

dBt +
Z2

t θ
2
t

Z3
t

dt
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=
1

Zt

(
θ2t dt+ θt dBt

)
.

Hence, by the product rule,

dM̃t = d

(
Mt

Zt

)
=

dMt

Zt

+Mtd

(
1

Zt

)
+ d

〈
M,

1

Zt

〉
=

Γt

Zt

dBt +
Mt

Zt

(
θ2t dt+ θt dBt

)
+

θtΓt

Zt

dt

=
θt
Zt

(Mtθt + Γt) dt+
1

Zt

(Γt + θtMt) dBt

=
θt
Zt

(Mtθt + Γt) dt+
1

Zt

(Γt + θtMt)
[
dB̃t − θt dt

]
=

Γt + θtMt

Zt

dB̃t

=

(
Γt

Zt

+ M̃t

)
dB̃t.

Therefore, we arrive at the representation with

Γ̃t :=
Γt

Zt

+ M̃t.

The existence of {∆t}t∈[0,T ] can now be proven using Corollary 4.3. From (12), we know
that {DtXt}t∈[0,T ] is a P̃-martingale. By Corollary 4.3, there exists an adapted process Γ̃
such that

DtXt = X0 +

∫ t

0

Γ̃s dB̃s.

On the other hand, by (12), we also have

DtXt = X0 +

∫ t

0

∆sSsσs dB̃s.

By equating the coefficient of the diffusion term, we arrive at

∆t =
Γ̃t

Stσt

.
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